将多智能体的联合值函数分解为单个智能体的值函数之和,从而降低学习的复杂度。
(二)策略梯度方法
通过直接优化智能体的策略来实现协同决策,常见的有 A2C、A3C 等算法。
(三)通信机制
智能体之间通过通信来共享信息,提高协同决策的效果,如基于消息传递的算法。
(四)对手建模
考虑对手的策略和行为,以制定更有效的协同策略。
五、基于深度强化学习的多智能体协同决策系统的应用
(一)机器人协作
多个机器人在工厂生产线上协同工作、执行搜索救援任务等。
(二)智能交通
车辆之间的协同驾驶,优化交通流量,提高交通安全。
(三)军事领域
多无人机或无人战车的协同作战。
(四)资源分配
在云计算、网络资源分配等场景中实现高效的资源利用。
六、挑战与解决方案
(一)环境的不确定性和动态性
采用更鲁棒的学习算法、增加模型的适应性和泛化能力。