(一)改进的网络架构
提出适应小样本学习的生成器和判别器结构,如引入注意力机制、多层级特征融合等。
(二)小样本条件下的训练策略
包括数据增强、预训练与微调结合、对抗训练的优化等。
(三)损失函数的设计
结合小样本特点设计合适的生成损失和判别损失函数。
四、实验与结果分析
(一)数据集和实验设置
选择具有代表性的小样本数据集,并详细说明实验的参数设置和评估指标。
(二)与现有方法的对比实验
将所提出的方法与其他小样本学习和图像生成方法进行对比,展示在生成质量、多样性和样本利用效率等方面的优势。
(三)消融实验
通过逐步去除或修改所提出方法的关键组件,分析各部分对性能的影响。
(四)结果可视化与分析
展示生成的复杂图像示例,从视觉效果和定量指标两个方面进行分析。